

TABLE OF CONTENTS

- 1. Introduction
- 2. Brief overview of other platforms
- 3. ODE architecture
 - a. Sea level: Frontend
 - b. Midwater: Ingester-Middleware
 - c. Abysses: Backend
- 4. ODE on Datarmor
 - a. Work in progress
 - b. Applications

INTRODUCTION

PALAOA = 96 kHz / 16 b / PCM

~ 6 Tb / yr !

Satellite imagery

Mobile PAM:

gliders, ARGO

profilers

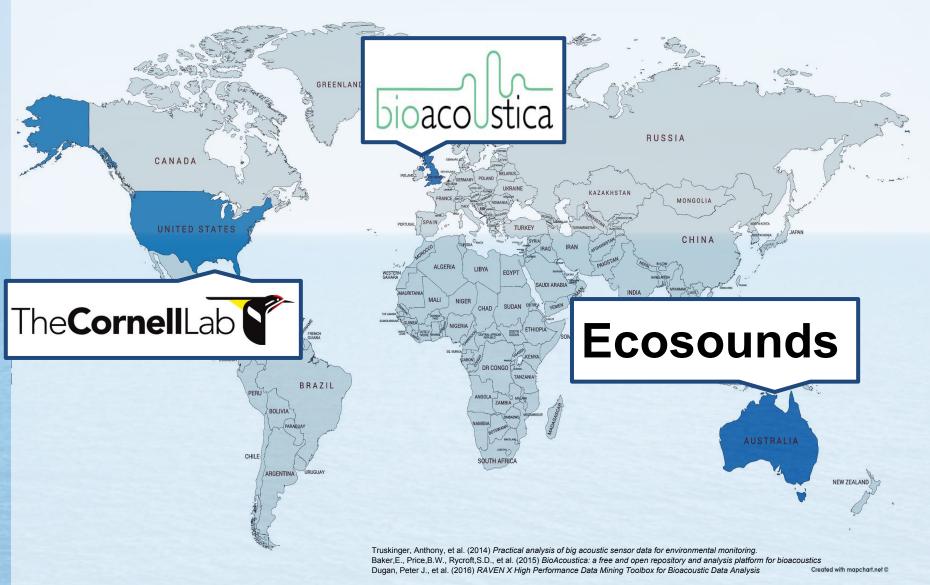
Weather

buoys

No physics models to couple underwater / above water vectors

Many Earth Obs vectors, Data ... yet too few merging with PAM

Visual surveys


Genetics and

stranding

Oceanographic models

No multi-modal machine learning framework

BRIEF OVERVIEW OF OTHER PLATFORMS

TABLE OF CONTENTS

- 1. Introduction
- 2. Brief overview of other platforms
- 3. ODE architecture
 - a. Sea level: Frontend
 - b. Midwater: Ingester-Middleware
 - c. Abysses: Backend
- 4. ODE on Datarmor
 - a. Work in progress
 - b. Applications

ODE ARCHITECTURE - FRONT END

Objectives

- Multi-user labelling interface to standardize and share labels
- Cross-calibration and -validation and create multi-modal ground truth

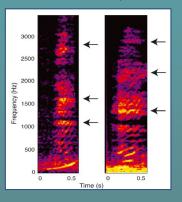
Work

- In progress
 - In the short-term, having a labelling interface (e.g. crowd audio annotator (Cartwright et al., 2017)

Cartwright, M. et al. (2017) ACM

ODE ARCHITECTURE-INGESTER-MIDDLEWARE

Ingester - Middleware


Objectives

- Larger interpretation framework to explain variability
- Cross-calibration and -validation and create multi-modal ground truth

Work

- ElasticSearch for ocean data merging
 - highly scalable search engine
 - dedicated tools for spatio-temporal range requests
- Indexing scheme
 - format organization in json (field names, units)

ODE ARCHITECTURE-BACKEND

Objectives

- Automatize basic content report and summary metrics (e.g spectrograms)
- Intensify model testing

Work

- Distributed storing & analytics : Hadoop / Spark
- Interoperable HPC language software : Scala / Python
- Optimizing computations at low-level
- Signal processing theory (e.g how to aggregate time series with different time granularities?)

Backend

TABLE OF CONTENTS

- 1. Introduction
- 2. Brief overview of other platforms
- 3. ODE architecture
 - a. Sea level: Frontend
 - b. Midwater: Ingester-Middleware
 - c. Abysses: Backend
- 4. ODE on Datarmor
 - a. Work in progress
 - b. Applications

ODE ON DATARMOR-WORK IN PROGRESS

Achieved work Short-Term Mid-term Long-term

- Used resources:
 Work space: 1 To
 - User cases:
 - Code snippets to try Spark

- Resources: Work space:
 - Several To
 - User cases:
 - Computing spectrograms
 - Merging different environmental variables

- Resources: Work space:
 - Several To
 - Web server
 - User cases:
 - Acoustic event detection with heuristic methods
 - Labelling on website

- Resources: Work space:
 - Several To
 - GPUs for ML
 - Web server
 - User cases:
 - Matching different variables with underwater acoustic events
 - Classifying acoustic events

ODE ON DATARMOR-APPLICATIONS

Operational measure

- cross-validation of meteorological sources
- data assimilation model
- automatic source identification

Fine scale analysis

- ecological quality of ecosystems
- pluri-identity of marine animals

Impact studies

- anthropic activities
 on marine fauna
- evolution of global warming

TAKE-AWAY MESSAGES

Sustainable reconciliation with Research through ODE

- Dedicated platform + Web interface + Collaborative working environment
 - connecting research outputs (state-of-the-art tools and expertise) to end-user needs
 - involving end-user for: i) building their features, ii) feature generation
 - Open source codes
- Method Benchmarking
 - bringing transparency into on-the-shelf and on-board PAM tools
 - certification tool on method performance
- Centralized dedicated platform
 - permanent updating of operational services with research innovation
- Mutualizing data and material resources with research
 - long-term investment with multi-usage of resources
 - Development of multi-applications in-situ measurement platforms (Resource sharing and co-located multi-modal measurements)

CONCLUSION

Thank You for your attention!

Feel free to ask questions

Core team

Joseph Allemandou

Alexandre Degurse

Yann Doh

Erwan Keribin

Paul NGuyen