

Devenir des apports solides du Rhône dans le Golfe du Lion : étude de la dynamique du panache du Rhône en réponse aux forçages hydrométéorologiques

Aurélien GANGLOFF¹, Romaric VERNEY¹, Claude ESTOURNEL²

Journée PDCM – 17 mai 2018, PNB

¹ IFREMER, Laboratoire DYNECO/DHYSED

² Laboratoire d'Aérologie, CNRS et Université Paul Sabatier

Contexte

Hydrodynamique : MARS-3D (Lazure and Dumas, 2008)

- Résolution des équations de Navier-Stokes Hypothèses : hydrostatique / Boussinesq
- Méthode des différences finies sur un maillage structuré
- Deux modèles emboîtés : GOL + zoom AGRIF Résolution horizontale → 1.2 km (GOL) et 240 m (AGRIF) 321x194 pour GOL Résolution verticale → 30 niveaux sigma généralisés

Hydrodynamique: MARS-3D (Lazure and Dumas, 2008)

- Résolution des équations de Navier-Stokes Hypothèses : hydrostatique / Boussinesq
- Méthode des différences finies sur un maillage structuré
- Deux modèles emboîtés : GOL + zoom AGRIF
 Résolution horizontale → 1.2 km (GOL) et 240 m (AGRIF)
 321x194 pour GOL
 Résolution verticale → 30 niveaux sigma généralisés
- > Forçages réalistes :

Forçage	Modèle / Mesure	Source
Vagues	WWIII / MENOR UG	(Rascal & Ardhuin, 2013)
Vents	ARPEGE (-HR)	(Déqué <i>et al.,</i> 1994)
Débits	Moyennes journalières	(Agence de l'eau)
C _{MES}	Station SORA (Rhône) Relations empiriques (autres)	(Adell, 2013) (Bourrin and Durrieu de Madron, 2006)

Validation de l'hydrodynamique

Hypothèse : bonne reproduction de l'hydrologie (3D) dans la zone d'influence du panache
 bonne reproduction de l'hydrodynamique

Validation de l'hydrodynamique

> Hypothèse : bonne reproduction de l'hydrologie (3D) dans la zone d'influence du panache

Validation de l'hydrodynamique

Comparaison MARS3D / GLIDER

Modèle sédimentaire : MIXSED (Le Hir et al., 2011)

Modèle multicouches / multiclasses

- ➤ Sédiment transporté en suspension → Résolution d'une équation d'advection-dispersion
- Advection, érosion, et dépôt de 4 classes de sédiments :
 - 2 vases (MUD1 / MUD2) différenciées par leur vitesse de chute
 - 2 sables (125 μm et 360 μm)

Modèle sédimentaire : MIXSED (Le Hir et al., 2011)

Modèle multicouches / multiclasses

- ➤ Sédiment transporté en suspension → Résolution d'une équation d'advection-dispersion
- Advection, érosion, et dépôt de 4 classes de sédiments :
 - 2 vases (MUD1 / MUD2) différenciées par leur vitesse de chute
 - 2 sables (125 μm et 360 μm)

Gestion de l'érosion (E)

Paramètre d'érodabilité $E = \underbrace{\begin{bmatrix} E_0 \\ \overline{\tau_{bot}} \\ 0 \end{bmatrix}}^{\text{Puissance}} \underbrace{\begin{bmatrix} \text{Contrainte critique} \\ \text{Contrainte critiq$

Contrainte sur le fond (courant + vagues)

Enjeu scientifique

Introduction

- Renseigner la variabilité saisonnière et interannuelle du panache turbide du Rhône
- Identifier les allures du panache en réponse aux principaux forçages hydrométéorolgiques (vent, débit du Rhône)

Extraction des métriques

Représentation des centres géométrique et des « squelettes » des panaches

Conditions de vents offshore

Conditions de vents onshore

→ Panache turbide plaqué à la côte

Extraction des métriques

> Extraction des métriques des panaches simulés

- Légère sous-estimation de l'aire (58 km² en moyenne)
- Surestimation des concentrations en MES dans le panache

0.53 mg/l et 3.33 mg/l pour les concentrations moyennes et maximales, respectivement

Extraction des métriques des panaches simulés

- Légère sous-estimation de l'aire (58 km² en moyenne)
- Surestimation des concentrations en MES dans le panache

0.53 mg/l et 3.33 mg/l pour les concentrations moyennes et maximales, respectivement

Les panaches simulés sont globalement localisés plus près de l'embouchure que dans les observations

Utilisation datarmor

MPI2D - 28CPU - 30Gb

Simulation: 6mois ~72h (...et on pourrait certainement faire mieux...)

~100 simulations – 200Go par sortie de simulation