





# Devenir des apports solides du Rhône dans le Golfe du Lion : étude de la dynamique du panache du Rhône en réponse aux forçages hydrométéorologiques

Aurélien GANGLOFF<sup>1</sup>, <u>Romaric VERNEY<sup>1</sup></u>, Claude ESTOURNEL<sup>2</sup>

Journée PDCM – 17 mai 2018, PNB

<sup>1</sup> IFREMER, Laboratoire DYNECO/DHYSED
 <sup>2</sup> Laboratoire d'Aérologie, CNRS et Université Paul Sabatier

E-mail: aurelien.gangloff@ifremer.fr





Introduction

## Hydrodynamique : MARS-3D (Lazure and Dumas, 2008)

- Résolution des équations de Navier-Stokes Hypothèses : hydrostatique / Boussinesq
- Méthode des différences finies sur un maillage structuré
- Deux modèles emboîtés : GOL + zoom AGRIF
  Résolution horizontale → 1.2 km (GOL) et 240 m (AGRIF)
  321x194 pour GOL
  Résolution verticale → 30 niveaux sigma généralisés



Introduction

4.4

4.5

4.6

4.7

4.8

4.9

## Hydrodynamique : MARS-3D (Lazure and Dumas, 2008)

- Résolution des équations de Navier-Stokes Hypothèses : hydrostatique / Boussinesq
- Méthode des différences finies sur un maillage structuré
- Deux modèles emboîtés : GOL + zoom AGRIF
  Résolution horizontale → 1.2 km (GOL) et 240 m (AGRIF)
  321x194 pour GOL
  Résolution verticale → 30 niveaux sigma généralisés
- Forçages réalistes :

|       | 2500               |
|-------|--------------------|
|       | 2000               |
|       | 1500 Ê             |
| 2.6   | 1000 <sup>td</sup> |
|       | 500                |
|       |                    |
|       | $ \rightarrow $    |
| 43.45 | 100                |
| 43.35 | 80 E               |
| 43.2  | depth              |
|       | 20                 |
| 43.15 |                    |

| Forçage          | Modèle / Mesure                                          | Source                                                    |
|------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Vagues           | WWIII / MENOR UG                                         | (Rascal & Ardhuin, 2013)                                  |
| Vents            | ARPEGE (-HR)                                             | (Déqué <i>et al.,</i> 1994)                               |
| Débits           | Moyennes journalières                                    | (Agence de l'eau)                                         |
| C <sub>MES</sub> | Station SORA (Rhône)<br>Relations empiriques<br>(autres) | (Adell, 2013)<br>(Bourrin and Durrieu de<br>Madron, 2006) |



30

43.4

43.3

43.2

4.2

4.4

40

4.6

4.8

5

in-situ data

model (i,j) model (i,j-1)

10

20

Salinity (PSU)

30

40<sup>L</sup> 0





## Modèle sédimentaire : MIXSED (Le Hir et al., 2011)

Modèle multicouches / multiclasses

- Sédiment transporté en suspension ->
  Résolution d'une équation d'advection dispersion
- Advection, érosion, et dépôt de 4 classes de sédiments :
  - 2 vases (MUD1 / MUD2) différenciées par leur vitesse de chute
  - 2 sables (125 μm et 360 μm)



## Modèle sédimentaire : MIXSED (Le Hir et al., 2011)

Modèle multicouches / multiclasses

- Sédiment transporté en suspension ->
  Résolution d'une équation d'advection dispersion
- Advection, érosion, et dépôt de 4 classes de sédiments :
  - 2 vases (MUD1 / MUD2) différenciées par leur vitesse de chute
  - 2 sables (125 μm et 360 μm)







30

**Modélisation** 

#### Validation du modèle sédimentaire









#### Conditions de vents offshore



#### Conditions de vents onshore



 $\rightarrow$  Panache turbide plaqué à la côte

Gangloff et al., 2017





SATELLITE

Imagerie satellite

**Modélisation** 

## Validation du modèle sédimentaire

## Extraction des métriques des panaches simulés



- Légère sous-estimation de l'aire (58 km<sup>2</sup> en moyenne)
- Surestimation des concentrations en MES dans le panache

0.53 mg/l et 3.33 mg/l pour les concentrations moyennes et maximales, respectivement

 Les panaches simulés sont globalement localisés plus près de l'embouchure que dans les observations

## **Utilisation datarmor**

MPI2D – 28CPU - 30Gb

Simulation : 6mois ~72h (...et on pourrait certainement faire mieux...)

~100 simulations – 200Go par sortie de simulation