
1/31/2013

1

1 / 75 Software & Services Group, Energy Engineering Team

HPC Introduction

Philippe Thierry
Intel Corp.

2 / 75 Software & Services Group, Energy Engineering Team

Agenda

• Introduction to HPC

• Silicium first:

• CPU

• Coprocessor

• Application point of view:

• Perf measurement

• How to make it faster

• Are the results valid ?

1/31/2013

2

3 / 75 Software & Services Group, Energy Engineering Team

Glossary, “High performance computing”

� Peak Flops = nb of floating points operations per cycle * frequency

Efficiency = % of the peak performance

For Flops => Peak flops / Achieved flops

For BW => Peak GB/s versus Achieved GB/s

Both depend on Hardware and Software

sec/sec)/(*)/(FlopscyclecycleFlopsPeak ==

First question : what is the peak perf of your laptop ?

4 / 75 Software & Services Group, Energy Engineering Team

A very brief history

60’s 70’s 80’s 90’s 00’s

The Intel Paragon was a series of

massively parallel

supercomputers produced by

Intel The Paragon series was

based around the Intel i860 RISC

microprocessor. Up to 2048

(later, up to 4000) i860s were

connected in a 2D grid

The CM-5 is MIMD (Multiple

Instructions Multiple Data) using

commodity SPARC processors using a

"fat tree" interconnect

The CM-2 is SIMD

(16 k processors)

Intel ASCI RED:

MIMD massively-

parallel

processing

machine initially

consisting of

4,510 compute

nodes)

1 Tflops (1996)

RISC

Multithreading

Superscalar

Vector machine

MPP machine

1/31/2013

3

5 / 75 Software & Services Group, Energy Engineering Team

Then what about Exaflops ?

5

1 EFlop

~ 2019

6 / 75 Software & Services Group, Energy Engineering Team

SuperComputer power challenges

French Nuclear plants ~63 GW:

34 reactors of 900 MW

20 reactors of 1300 MW

4 reactors of 1450 MW

+ EPR 1 600 MW
Today CPU:

200 GF-DP

150 W

Would gives ~ 1,5 GW for 1 Exaflops Peak

[20:40] MW would be a reasonnable target

x 5. 10E06

(40 M cores)

1/31/2013

4

7 / 75 Software & Services Group, Energy Engineering Team

SuperComputer power challenges

• At multi-rack system level

• Super Computer Today: 10 PF, 12 MW � 1200 pJ / Ops

• Exaflop (lower lim.) : 1000 PF, 20 MW � 20 pJ / Ops

• Exaflop (upper lim.) : 1000 PF, 40 MW � 40 pJ / Ops

• Processor portion needs to reduce to 10 pJ/ Ops

• Needs huge improvement (30 to 60x) in all system components

8 / 75 Software & Services Group, Energy Engineering Team

Micro architecture Performance Parameters

frequency + voltage reduction : Cubic reduction of power

• Core capability (IPC)

• Vector Flop density (SIMD)

• Core count

• On-die Interconnect

• Frequency

• Mem Latency

• Mem BW & Size

Perf = Frequency * IPC

Power ~ C * Voltage² * Freq

1/31/2013

5

9 / 75 Software & Services Group, Energy Engineering Team

First approximation: HPC is only a matter of Freq and BW

- Frequency is « not an issue »

- Data movement is the issue

The model : “Total Elapsed time = T_CPU + T_mem + … “ is fine but …

T_CPU and T_mem are strongly correlated

for (i=0;i<=MAX;i++)

c[i]= a[i] + b[i]* d[i];
store load load load

add mul

Achieved Flops/s won’t be high enough if load / store are not fast enough

10 / 75 Software & Services Group, Energy Engineering Team

Size, BW & latency

CPU

L 1 L 2 L 3

memory

I / O Interconnect.

From the core ………… - > …… to the i/o subsystem

Bandwidth
Latency

Size

1/31/2013

6

11 / 75 Software & Services Group, Energy Engineering Team

CPU.ops% * (cycle / inst.) + Mem.ops% * [(LL_success% * cycle / inst) + LL_misses% * cycle/inst)]

Memory bound.
“Stream”

CPU bound.
“HPL” Real world applications

Part of the code
doing ops

Part of the code
doing memory

access

How to deal with that on the application side ?

CPU

L 1 L 2 L 3

memory

I / O

Interconnect.

12 / 75 Software & Services Group, Energy Engineering Team

Agenda :

Silicium First

1/31/2013

7

13 / 75 Software & Services Group, Energy Engineering Team

Vectorization

� Single Instruction Multiple Data (SIMD):

- Processing vector with a single operation

- Provides data level parallelism (DLP)

- Because of DLP more efficient than scalar processing

� Vector:

- Consists of more than one element

- Elements are of same scalar data types

(e.g. floats, integers, …)

1/31/201313

Scalar
Processing

Vector
Processing

AA BB

CC

++

A B

C

+

CiCi

++

AiAi BiBi

CiCi

AiAi BiBi

CiCi

AiAi BiBi

CiCi

AiAi BiBi

VLVL

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

14 / 75 Software & Services Group, Energy Engineering Team

SIMD Types for Intel® Architecture I

1/31/201314

X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
063

MMX™
Vector size: 64 bit
Data types:
•8, 16 and 32 bit integer
VL: 2, 4, 8

SSE
Vector size: 128 bit
Data types:
•8, 16, 32, 64 bit integer
•32 and 64 bit float
VL: 2, 4, 8, 16

X2

Y2

X2◦Y2 X1

Y1

X1◦Y1X4

Y4

X4◦Y4 X3

Y3

X3◦Y3
127 0

Illustrations: Xi, Yi & results 32 bit integer

1/31/2013

8

15 / 75 Software & Services Group, Energy Engineering Team

SIMD Types for Intel® Architecture II

1/31/201315

AVX
Vector size: 256 bit
Data types:
• 32 and 64 bit float
VL: 4, 8, 16

Intel® MIC
Vector size: 512 bit
Data types:
• 32 and 64 bit integer
• 32 and 64 bit float
VL: 8,16

X4

Y4

X4◦Y4 X3

Y3

X3◦Y3 X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
0

X8

Y8

X8◦Y8 X7

Y7

X7◦Y7 X6

Y6

X6◦Y6 X5

Y5

X5◦Y5
255

X4

Y4

X4◦Y4 X3

Y3

X3◦Y3 X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
0

X8

Y8

X8◦Y8 X7

Y7

X7◦Y7 X6

Y6

X6◦Y6 X5

Y5

X5◦Y5X16

Y16

X16◦Y16 …

...

…

511

Illustrations: Xi, Yi & results 32 bit float

16 / 75 Software & Services Group, Energy Engineering Team

Reminder about the peak Flops

Scheduler (Port names as used by Intel® Architecture Code Analyzer ***)

Load

Port 0 Port 1 Port 5 Port 2 Port 3

Load

Store Address

Store DataALUALU ALU/JMP

AVX FP Shuf

AVX FP Bool

VI* ADDVI* MUL

SSE MUL

DIV**

SSE ADD

AVX FP ADD

AVX FP MUL

0 63 127 255

SSE Shuf

AVX FP Blend

Port 4

AVX FP Blend

VI* ADD Store Address

6 instructions / cycle:

• 3 memory ops

• 3 computational operations

Nehalem : Two 128 bits SIMD per cycle

4 MUL (32b) and 4 ADD (32b): 8 Single Precision Flops / cycle

2 MUL (64b) and 2 ADD (64b): 4 Double Precision Flops / cycle

Sandy bridge : Two 256 bits SIMD per cycle

8 MUL (32b) and 8 ADD (32b): 16 Single Precision Flops / cycle

4 MUL (64b) and 4ADD (64b): 8 Double Precision Flops / cycle

Intel® Sandy Bridge
micro-u

1/31/2013

9

17 / 75 Software & Services Group, Energy Engineering Team

Performance at a glance : What SNB brings

The total benefit (at node level) is given by a combinaison of factors

• Benefit from micro-u optimization (IPC)

from 1.1x to 1.3x

• Benefit from the nb of cores

up to 1.33x

• Benefit from AVX

up to 2x

• Benefit from Memory bandwidth

up to 1.42x per core

up to 1.9x on node basis D
D

R
3

D
D

R
3

D
D

R
3

D
D

R
3

20MB

Cache

C

C

C

C

MC

QPII/O

C

C

C

C

QPI

QPI

Gen3 x16

Gen3 x16

Gen3 x8

18 / 75 Software & Services Group, Energy Engineering Team

How to take advantage of AVX for more Flops / cycles

1.0

2.0

0.0

Assembly

Intrinsics

Assembly

IntrinsicsMKL Dgemm
benchmark
MKL Dgemm
benchmark

MKL FFT
benchmark
MKL FFT

benchmark
1.5

Use Intel® Math Kernel

Library as much as possible

Use of intrinsics or assembly

for specific kernels

Use Compiler and Intel tools

to optimize your source code

speedup

Application
Source code
Application
Source code

One core basis comparison

1/31/2013

10

19 / 75 Software & Services Group, Energy Engineering Team

Memory Bandwith: a key point

For Westmere DP server with 1333 Mhz DDR3:

8*1.333* 3*2 = 63.984 GB/s where Stream triad gives ~ 42 GB/s

For WSM / Nehalem-EX platform: 4 channels , 4 sockets and 1066 MHz memory

8*1.066* 4*4 = 136.484 GB/s peak (ST : 102 GB/s)

For Sandy Bridge EP platform: 4 channels , 2 sockets and 1600 MHz memory

8*1.600* 4*2 = 102.4 GB/s peak (ST : 80 GB/s)

Basical rules for theoretical memory BW [Bytes / second] :

8 [Bytes / channel] * Mem freq [Gcycles/sec] * nb of channels * nb of sockets

*Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

20 / 75 Software & Services Group, Energy Engineering Team

Intel® Xeon Phi™ Product Family

• Up to 61 IA cores/1.1 GHz/ 244 Threads

• Up to 8GB memory with up to 352 GB/s bandwidth

• 512-bit SIMD instructions

• Open Source Linux operating system

• IP addressable

• Standard programming languages, tools, clustering

• 22 nm process

Passive Card

Active Card

1/31/2013

11

21 / 75 Software & Services Group, Energy Engineering Team

http://software.intel.com/en-us/mic-developer

22 / 75 Software & Services Group, Energy Engineering Team

Intel® Xeon Phi™ Block Diagram

1/31/2013

12

23 / 75 Software & Services Group, Energy Engineering Team

Core Architecture

Instruction
decoder

L1 Cache (I & D)

L2 Cache

Interprocessor
network

Vector Unit Scalar Unit

Vector
Registers

Scalar
Registers

512 KB Slice per Core – Fast Access to Local Copy

32 KB per core

L2 Hardware Prefetching

Fully Coherent

In Order

512-wide64-bit

4 Threads per Core

VPU: integer, SP, DP;
3-operand,

16-instruction

24 / 75 Software & Services Group, Energy Engineering Team

Intel® Software Tools Roadmap

High
Performance
Computing /
Enterprise

Intel® Parallel Studio XE 2011

Q1 ’13Q1 ’12 Q2 ’12 Q4 ’12Q3 ’12

Gold releaseBetaAlpha

Many-Core

Intel® Parallel Studio XE 2013

Intel® Cluster Studio XE 2011 Intel® ClusterStudio XE 2013

Intel Compilers & Analysis Tools

for Intel® MIC Architecture

(Linux*)

Intel Cluster Tools for Intel®

MIC Architecture (Linux*)

1/31/2013

13

25 / 75 Software & Services Group, Energy Engineering Team

Spectrum of Execution Models

CPU-Centric Coprocessor-Centric

NativeSymmetricOffloadMulti-core Hosted

Main()

Foo()

MPI_*()

Main()

Foo()

MPI_*()

Main()

Foo()

MPI_*()
Multi-core

Many-core

Reverse Offload

Foo()

PCIe

26 / 75 Software & Services Group, Energy Engineering Team

Spectrum of Execution Models (Offload / Native / Symmetric)

Offload:

Workload is run on host, and

highly parallel phases on

Coprocessor

!dir$ omp offload target(mic)

!$omp parallel do

do i=1,10

A(i) = B(i) * C(i)

enddo

!$omp end parallel

MPI Example

on Host with offload to coprocessors

1/31/2013

14

27 / 75 Software & Services Group, Energy Engineering Team

Spectrum of Execution Models (Offload / Native / Symmetric)

MPI example

on Coprocessor only

Native (Coprocessor-only

model):

Workload is run solely on coprocessor

icc –mmic … ./bin_mic

Then

ssh mic0

./bin_mic

Or start it from host

micnaticeloadex ./bin_mic

28 / 75 Software & Services Group, Energy Engineering Team

Spectrum of Execution Models (Offload / Native / Symmetric)

MPI example

On Host and Coprocessor

Symmetric:

Workload runs on Host & Coprocessors

Mpiexec –host $host –np XX … \

-env OMP_NUM_THREADS YY ./mpi_bin_xeon \

: –host mic0 -np VV ... \

-env OMP_NUM_THREADS WW ./mpi_bin_phi

1/31/2013

15

29 / 75 Software & Services Group, Energy Engineering Team

Symmetric mode example

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

SNB natif

4 MPI/ 4 OMP KNC ES2 natif

12 MPI/ 20 OMP Hybrid SNB 4/4

+ KNC ES2 12/20

1,00

2,57

3,57

P
e

rf
o

rm
a

n
ce

 g
a

in

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

W
e

a
k

 S
ca

li
n

g
 S

p
e

e
d

u
p

Nb of nodes (2 sockets SNB + 1 KNC B0. ES2)

weak scaling

speedup Theory

Gain in work done per hour

Arslan et al., 2013. Rice HPC O&G workshop

30 / 75 Software & Services Group, Energy Engineering Team

Theoretical Maximums : E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Source: Intel as of October 17, 2012 Configuration Details: Please reference slide speaker notes. For more information go to http://www.intel.com/performance

666

2 022

2 147

0

500

1000

1500

2000

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Single Precision (GF/s)

333

1 011

1 074

0

200

400

600

800

1000

1200

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Double Precision (GF/s)

102

320

352

0

50

100

150

200

250

300

350

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Memory Bandwidth (GB/s)

SP FP peak: core_freq * ncores * 16 [floats] * 2 [ops] => [Gflops/s]

DP FP peak: core_freq * ncores * 8 [floats] * 2 [ops] => [Gflops/s]

16 [Chan.] * Chan.Speed [GT/s] * 4 [bytes]

=> [GB/s]

Higher is Better

1/31/2013

16

31 / 75 Software & Services Group, Energy Engineering Team

Synthetic Benchmark Summary: E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Source: Intel Measured results as of October 26, 2012 Configuration Details: Please reference slide speaker notes.
For more information go to http://www.intel.com/performance

640

1 729

1 860

0

500

1000

1500

2000

E5-2670
Baseline
(2x

2.6GHz,
8C,

115W)

5110P
(60C,

1.053GHz,
225W)

SE10P
(61C,
1.1GHz,
300W)

SGEMM (GF/s)

Higher is Better

8
5
%
 E
ff
ic
ie
n
t

8
6
%
 E
ff
ic
ie
n
t

309

833
883

0

200

400

600

800

1000

E5-2670
Baseline
(2x

2.6GHz,
8C,

115W)

5110P
(60C,

1.053GHz,
225W)

SE10P
(61C,
1.1GHz,
300W)

DGEMM (GF/s)

8
2
%
 E
ff
ic
ie
n
t

8
2
%
 E
ff
ic
ie
n
t

303

722

803

0

200

400

600

800

1000

E5-2670
Baseline
(2x

2.7GHz,
8C,

115W)

5110P
(60C,

1.053GHz,
225W)

SE10P
(61C,
1.1GHz,
300W)

SMP Linpack (GF/s)

7
1
%
 E
ff
ic
ie
n
t

7
5
%
 E
ff
ic
ie
n
t

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

(Intel® MKL)

32 / 75 Software & Services Group, Energy Engineering Team

Synthetic Benchmark Summary: E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Source: Intel Measured results as of October 26, 2012 Configuration Details: Please reference slide speaker notes.Formore

information go to http://www.intel.com/performance

78

159

171

0

50

100

150

200

2S Intel®
Xeon®

processor

1 Intel®
Xeon Phi™
coprocessor

1 Intel®
Xeon Phi™
coprocessor

5110P STREAM Triad (GB/s)

Notes

1. Intel® Xeon® Processor E5-2670 used for all SGEMM Matrix = 13824 x 13824 , DGEMM Matrix 7936 x 7936, SMP LinpackMatrix 30720 x 30720

2. Intel® Xeon Phi™ coprocessor 5110P (ECC on) with “Gold Release Candidate” SW stack SGEMM Matrix = 11264 x 11264, DGEMM Matrix 7680 x 7680, SMP LinpackMatrix 26872 x 28672

E
C
C
 O
n

E
C
C
 O
ff

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

78

174
181

0

50

100

150

200

2S Intel®
Xeon®

processor

1 Intel®
Xeon Phi™
coprocessor

1 Intel®
Xeon Phi™
coprocessor

SE10P STREAM Triad (GB/s)

E
C
C
 O
n

E
C
C
 O
ff

Higher is Better

1/31/2013

17

33 / 75 Software & Services Group, Energy Engineering Team

Application Performance vs. 2S-E5-2670

Notes:

1. 2S Intel® Xeon® processor X5690 vs. 2S Xeon* + 1 Intel® Xeon Phi™ coprocessor (pre production HW/SW)

2. 2S Intel® Xeon® processor E5-2687 vs. 1 Intel® Xeon Phi™ coprocessor (preproduction HW/SW) (960 versions of improved workload)

3. 2S Intel® Xeon® processor E5-2680 vs. 1 Intel® Xeon Phi™ coprocessor (preproduction HW/SW)

4. 4 node cluster, each node with 2S Intel® Xeon® processor E5-2867 (comparison is cluster performance with and without 1 pre-production Intel® Xeon Phi™ coprocessor per node)

5. Includes additional FLOPS from transcendental function unit

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.
Source: Intel Measured results as of October 17, 2012 Configuration Details: Please reference slide speaker notes.

For more information go to http://www.intel.com/performance

Molecular
Dynamics

Embree
Raytracing FinanceSeismic

Finite
Element
Analysis

INTEL LABS
RAYTRACING

SPEED-UP

1.8X

LOS ALAMOS
MOLECULAR
DYNAMICS

UP TO

2.52X

BLACKSCHOLES
SP

UP TO

7X

JEFFERSON LAB
LATTICE QCD

UP TO

2.7X
Monte Carlo SP

UP TO

10.75X

ACCELEWARE
8TH ORDER FD

UP TO

2.05X

SANDIA
NATIONAL LABS

MiniFE

UP TO

1.7X

Physics

Real world applications
Memory bound.

“Stream”

CPU bound.

“HPL”

34 / 75 Software & Services Group, Energy Engineering Team

Agenda :

Application Point of View
(Amdahl revisited)

1/31/2013

18

35 / 75 Software & Services Group, Energy Engineering Team

End users point of view : Physics and computing needs increase

Increase physics complexity
(at constant elapsed time and size)

Decrease elapsed time.
(at constant size and physics)

Increase problem size
(at constant time and physics)

35

36 / 75 Software & Services Group, Energy Engineering Team

Parallel computing: amdahl law

36

E
la

p
s
e
d

ti
m

e

1 c 2 c

Serial

Parallel

8c

E
la

p
s
e
d

ti
m

e

1 c 2 c

Serial

Parallel

8c

Overhead

In theory In practice

1/31/2013

19

37 / 75 Software & Services Group, Energy Engineering Team

Speedup and efficiency

S
p

e
e

d
u

p

Nb cores

Super linear

Linear (theory)

Ideal

Saturated

« try again »

T(n) : elapsed time on n cores

S(n) : speedup

E(n) : efficiency

S(n) = T(1) / T(n)

E(n) = S(n) / n

Ideal case:

S(n) = T(1) / T(n) = n*T(n) / T(n) = n

E(n) = S(n) / n = 1

(remember to draw this graph from node to cluster level)

38 / 75 Software & Services Group, Energy Engineering Team

• Amdahl’s law The serial bottleneck

• Software Compiler, OpenMP, MPI

• Data Locality Cache misses, latency

• Load Balancing Affect the parallel efficiency/scaling

• Parallel Overhead Affect the parallel efficiency/scaling

• Operating System Scheduling, Placement, I/O,...

• Hardware CPU MHz, Latency, BW,Topology, I/O

“it’s the bandwidth, stupid !”

Why applications don’t scale

1/31/2013

20

39 / 75 Software & Services Group, Energy Engineering Team

Parallel computing: HowTo ?
E
la
p
se
d
ti
m
e

1 c 4 c

E
la
p
se
d
ti
m
e

1 c

Serial Optimization:0 -

1 -

2 -

E
la
p
se
d
ti
m
e

Work on the overhead:

strong HDW /SFTW

relationship

Take advantage of parallelism

to run bigger workloads ?

(weak versus strong scaling)

40 / 75 Software & Services Group, Energy Engineering Team

First at all : do it serial

E
la
p
se
d
ti
m
e

1 c

E
la
p
se
d
ti
m
e

1 c

Profiling + HDW counters

Compiler option

Help the compiler

SIMD (sse)

Check memory management

Are all the Flops useful

1/31/2013

21

41 / 75 Software & Services Group, Energy Engineering Team

10 000 feet view of application measurements

Total elaspsed time = nb of CPU CYCLES / Frequency

Starting time

Computational kernel

• Flops

• Int

• Read/write Dram

• i/o

• Comm

by hands to get max

theoretical Perf

Get approximate values

using HDW counters

Whole application

• Parallel overhead

• « other instructions »

by hands

+ profiling tools

Total number of

Instructions / sec

(hdw counter)

42 / 75 Software & Services Group, Energy Engineering Team

3D Finite Difference Stencil and Time Derivative updates

x

y

z

Time
Derivative

curr_P, old_P

3D FD

curr_P old_P

new_P

do t =1, NT // time steps

do z = zmin, zmax // SPACE STEPS

do y = ymin, ymax

do x = xmin, xmax

[Finite Differences]

[Time Derivatives]

end do

end do

end do

end do

1/31/2013

22

43 / 75 Software & Services Group, Energy Engineering Team

What results to look for ?

Gflops /sec: Are we far from the peak of the algorithm & of the machine ?

(Mpts/s) -> (Flops/pts) -> (Flops/s)

Gbytes/sec : Are we bandwith limited or latency limited ?

Flops/ joule: Can we see the impact of any given implementation ?

Total nb Ops per point per iteration 292

Total nb of point 2229969960.00000

Total (sec) = 9.598

Total/ite (sec) = 0.479

Speed 1: 232.313 M points / sec

Speed 2: 6.968 E-002 Points / cycle

Speed 3: 67.835 Gflops / sec

=> 42.390 % of peak, 1 threads, 6 MPIs

By hands to get max theoretical Perf

Get approximate values using HDW counters

Computational kernel

• Flops / Int

• Read/write Dram

Needs to collect more than only the Elaspsed time !

44 / 75 Software & Services Group, Energy Engineering Team

Real numbers when we can’t count FLOPS by hands

Flops/s : Collect FP related counters

(FP_COMP_OPS_EXE.x87 + FP_COMP_OPS_EXE.SSE_DOUBLE_PRECISION + FP_COMP_OPS_EXE.SSE_SINGLE_PRECISION

+ FP_COMP_OPS_EXE.SSE_FP_SCALAR) *1E-09 / Elapsed_time

GB/s : Collect ‘UNCore read and write events’

(UNC_IMC_WRITES for each socket + UNC_IMC_READS for each socket) *1E-09 * Cache line size / E_time

+ WATT and Energy as a function of time

where Elapsed time = CPU_CLK_UNHALTED/ Processor Frequency / Nb of Cores

Hardware counters remain the fastest way to measure performance & efficiency

=> Gives Flops/s , memory demand and then Bytes/flops

1/31/2013

23

45 / 75 Software & Services Group, Energy Engineering Team

Max theoretical Flops/s by hands (isotropic 3DFD kernel)

Total number of flops per point: nF = 7K+5 ,

made of ADD: nA = 6K +2 and MUL: nM = K + 3

-> max (nA,nM) is the limiting factor

Achievable peak (with infinite bandwidth) is the ratio of nF by the max(nA, nM)

%Peak(K)= 100.0 * [nF / 2* max (nA,nM)]

K : half stencil length

=> Give the kernel efficiency

46 / 75 Software & Services Group, Energy Engineering Team

Reminder about the peak Flops

Scheduler (Port names as used by Intel® Architecture Code Analyzer ***)

Load

Port 0 Port 1 Port 5 Port 2 Port 3

Load

Store Address

Store DataALUALU ALU/JMP

AVX FP Shuf

AVX FP Bool

VI* ADDVI* MUL

SSE MUL

DIV**

SSE ADD

AVX FP ADD

AVX FP MUL

0 63 127 255

SSE Shuf

AVX FP Blend

Port 4

AVX FP Blend

VI* ADD Store Address

6 instructions / cycle:

• 3 memory ops

• 3 computational operations

Nehalem : Two 128 bits SIMD per cycle

4 MUL (32b) and 4 ADD (32b): 8 Single Precision Flops / cycle

2 MUL (64b) and 2 ADD (64b): 4 Double Precision Flops / cycle

Sandy bridge : Two 256 bits SIMD per cycle

8 MUL (32b) and 8 ADD (32b): 16 Single Precision Flops / cycle

4 MUL (64b) and 4ADD (64b): 8 Double Precision Flops / cycle

sec/sec)/(*)/(FlopscyclecycleFlopsPeak ==

Intel® Sandy Bridge micro-u

1/31/2013

24

47 / 75 Software & Services Group, Energy Engineering Team

Flops/s Wall : FP operations

Nb of tables implementation ADD MUL Total flops

Iso 3 6*K +2 K+3 7*K+5

Iso, rho 6 36*K – 95 19 *K – 46 56*K -141

VTI 7 Duveneck et al, 2011 6*K + 7 3*K + 8 9*K + 15

VTI, rho 10 Duveneck et al, 2011 36*K - 90 19 *K – 42 56*K - 132

TTI 24 Fletcher et al., 2009 30*K + 38 18*K + 62 48*K+100

Visco n/a Komatisch et al., 2009 n/a n/a n/a

50,00

60,00

70,00

80,00

90,00

100,00

2 7 12 17 22 27 32

%
 o

f
p

e
a

k
 F

lo
p

s/
s

half stencil length (K)

iso

iso+rho

vti

vti+rho

tti

Max % of SP peak as function of kernel length

TTI kernel is theoretically more efficient than the simple Isotropic !

%Peak(K)= 100.0 * [nF / 2* max (nA,nM)]

48 / 75 Software & Services Group, Energy Engineering Team

DRAM BW vs Total DRAM Reads + Writes

TTI – 3DFD is definitively not bandwidth bound

Total DRAM reads + write / 100 Inst. Ret.

M
e

m
B

W
 (

G
B

/S
)

12 mpi processes

Mem boundCPU bound

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

8th

16th

24th

Iso no-CB

Iso CB

TTI CB

TTI no-CBTTI no-CB

Visco

1/31/2013

25

49 / 75 Software & Services Group, Energy Engineering Team

Visco Elastic Kernel: DRAM demand and power consumption

0

W
A

T
T

S

300

250

200

150

100

50

G
ig

a
.

In
st

ru
ct

io
n

s
/

se
c

B
a

n
d

w
id

th
(G

B
/s)

Wall clock time (sec)

0.0 50 100 150 200 250

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.00

6

5

4

3

2

1

Read DRAM BW

Write DRAM BW

Power

G.Inst /sec

Easy correlation of Instructions and Watts

50 / 75 Software & Services Group, Energy Engineering Team

Perf & Perf per Watt

Higher is better

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Mpts/sec

Gflops / Joule

1250 pJ/Ops

2000 pJ/Ops

10 000 pJ/Ops

Exascale will need both highly optimized hardware and software

1/31/2013

26

51 / 75 Software & Services Group, Energy Engineering Team

M
.

In
st

ru
ct

io
n

s
/s

e
c/

 H
a

rd
w

a
re

 T
h

re
a

d

Wallclock (sec)

6 threads from Socket 0

6 threads from Socket 1

Example of Non Uniform Memory Access (NUMA)

To achieve core and memory placements:

1 MPI per socket + OMP threads, or 1 MPI per node + OMP threads

MInstr./sec/thread function of wallclock time

SEG 2011 51

52 / 75 Software & Services Group, Energy Engineering Team

FD (and RTM) BKMs: what may work .. or not

- Compiler option (-xSSE4.2,AVX , -ftz, -ipo) + specific loop directives

- SSE/AVX implementation

- difficult when you have many approximations with several stencils lengths

- Data layout: valuable in any case

- Cache Blocking:

- works fine on kernel , less impact on whole application

- impossible with variable stencil lengths and independent partial derivatives

- Loop splitting for complex equation

- valuable for independant partial derivaties

- impossible for variable stencil lengths

- Domain decomposition / Data decompostion

- MPI domain decomposition usefull to save memory per node (to avoid i/o for example)

- batch scheduler distribution of 1 shot / node : no MPI needed

- NUMA-aware Data Placement

- mandatory for Hybrid MPI + OMP

- Dedicated optimization for MIC

1/31/2013

27

53 / 75 Software & Services Group, Energy Engineering Team

Agenda :

Application Point of View

Just Make it

54 / 75 Software & Services Group, Energy Engineering Team

Vectorization of Code

• Transform sequential code to exploit vector processing capabilities (SIMD)

– Manually by explicit syntax

– Automatically by tools like a compiler

for(i = 0; i <= MAX;i++)

c[i] = a[i] + b[i];

a

b

c

+

a

b

c

++

a[i]

b[i]

c[i]

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

1/31/2013

28

55 / 75 Software & Services Group, Energy Engineering Team

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
Intel® Cilk™ Plus Array Notation Extensions

56 / 75 Software & Services Group, Energy Engineering Team

Control Vectorization !

Provides details on vectorization success & failure:

Linux*, Mac OS* X: -vec-report<n>, Windows*: /Qvec-report<n>

*: First available with Intel® Composer XE 2013

n Diagnostic Messages

0 Tells the vectorizer to report no diagnostic information. Useful for turning off reporting in case it

was enabled on command line earlier.

1 Tells the vectorizer to report on vectorized loops.

[default if n missing]

2 Tells the vectorizer to report on vectorized and non-vectorized loops.

3 Tells the vectorizer to report on vectorized and non-vectorized loops and any proven or assumed

data dependences.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the reason why they were not

vectorized.

6* Tells the vectorizer to use greater detail when reporting on vectorized and non-vectorized loops

and any proven or assumed data dependences.

1/31/2013 56

1/31/2013

29

57 / 75 Software & Services Group, Energy Engineering Team

Vectorization Report II

Note:

In case inter-procedural optimization (-ipo or /Qipo) is activated and

compilation and linking are separate compiler invocations, the switch

to enable reporting needs to be added to the link step!

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

novec.f90(38): (col. 3) remark: loop was not vectorized: existence
of vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW
dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized:
existence of vector dependence

1/31/2013 57

58 / 75 Software & Services Group, Energy Engineering Team

Reasons for Vectorization Fails & How to Succeed

● Most frequent reason is Dependence:

Minimize dependencies among iterations by design!

● Alignment: Align your arrays/data structures

● Function calls in loop body: Use aggressive in-lining (IPO)

● Complex control flow/conditional branches:

Avoid them in loops by creating multiple versions of loops

● Unsupported loop structure: Use loop invariant expressions

● Not inner loop: Manual loop interchange possible?

● Mixed data types: Avoid type conversions

● Non-unit stride between elements: Possible to change algorithm to allow

linear/consecutive access?

● Loop body too complex reports: Try splitting up the loops!

● Vectorization seems inefficient reports: Enforce vectorization, benchmark !

1/31/2013

30

59 / 75 Software & Services Group, Energy Engineering Team

IVDEP vs. SIMD Pragma/Directives

Differences between IVDEP & SIMD pragmas/directives:

�#pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

-Ignore vector dependencies (IVDEP):

Compiler ignores assumed but not proven dependencies for a loop

-Example:

�#pragma simd (C/C++) or !DIR$ SIMD (Fortran):

- Aggressive version of IVDEP: Ignores all dependencies inside a loop

- It’s an imperative that forces the compiler try everything to vectorize

- Efficiency heuristic is ignored

- Attention: This can break semantically correct code!

However, it can vectorize code legally in some cases that wouldn’t be possible otherwise!

void foo(int *a, int k, int c, int m)

{

#pragma ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}

60 / 75 Software & Services Group, Energy Engineering Team

Value Safety

“It may be very difficult to understand that two simulations of the same

process with the same code and the same parameters on the same computer

give different results”

1/31/2013

31

61 / 75 Software & Services Group, Energy Engineering Team

Value Safety

“It may be very difficult to understand that two simulations of the same

process with the same code and the same parameters on the same computer

give different results”

62 / 75 Software & Services Group, Energy Engineering Team

Floating Point (FP) Programming Objectives

- Accuracy

� Produce results that are “close” to the correct value

�Measured in relative error, possibly in ulp

- Reproducibility

� Produce consistent results

�From one run to the next

�From one set of build options to another

�From one compiler to another

�From one platform to another

- Performance

� Produce the most efficient code possible

These options usually conflict!

Judicious use of compiler options lets you control the tradeoffs.

Different compilers have different defaults.

1/31/2013

32

63 / 75 Software & Services Group, Energy Engineering Team

Users are Interested in Consistent Numerical Results

� Root cause for variations in results

- floating-point numbers � order of computation matters!

- Single precision arithmetic example (a+b)+c != a+(b+c)

226 – 226 + 1 = 1 (infinitely precise result)

(226 – 226) + 1 = 1 (correct IEEE single precision result)

226 – (226 – 1) = 0 (correct IEEE single precision result)

- Conditions that affect the order of computations

- Different code branches (e.g. SSE2 versus AVX)

- Memory alignment (scalar or vector code)

- Dynamic parallel task / thread / rank scheduling

� Bitwise repeatable/reproducible results

repeatable = results the same as last run (same conditions)

reproducible = results the same as results in other environments

Environments = OS / architecture / # threads / CPU /

6
3

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678901111

4.012345678901111

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

…

64 / 75 Software & Services Group, Energy Engineering Team

The –fp-model switch

� -fp-model
- fast [=1] allows value-unsafe optimizations (default)

- fast=2 allows additional approximations (very unsafe)

- precise value-safe optimizations only

(also source, double, extended)

- except enable floating point exception semantics

- strict precise + except + disable fma +
don’t assume default floating-point environment

� Replaces old switches –mp, -fp-port, etc (don’t use!)

� -fp-model precise -fp-model source
� recommended for ANSI/ IEEE standards compliance, C++ & Fortran

� “source” is default with “precise” on Intel 64 Linux

1/31/2013

33

65 / 75 Software & Services Group, Energy Engineering Team

Value Safety

ANSI/ IEEE standards compliance C++ & Fortran:

-fp-model source or -fp-model precise

• Prevents vectorization of reductions

• No use of “fast” division or square root

Ensures ‘Value Safety’ by disallowing:

x / x ���� 1.0 x could be 0.0, ∞, or NaN

x – y ���� - (y – x) If x equals y, x – y is +0.0 while – (y – x) is -0.0

x – x ���� 0.0 x could be ∞ or NaN

x * 0.0 ���� 0.0 x could be -0.0, ∞, or NaN

x + 0.0 ���� x x could be -0.0

(x + y) + z ���� x + (y + z) General reassociation is not value safe

(x == x) ���� true x could be NaN

66 / 75 Software & Services Group, Energy Engineering Team

Value Safety

Affected Optimizations include:

� Reassociation

� Flush-to-zero

� Expression Evaluation, various mathematical simplifications

� Math library approximations

� Approximate divide and sqrt

[-no]-prec-div /Qprec-div[-]

� Enables[disables] various divide optimizations
- x / y � x * (1.0 / y)

- Approximate divide and reciprocal

[-no]-prec-sqrt /Qprec-sqrt[-]

� Enables[disables] approximate sqrt and reciprocal sqrt

1/31/2013

34

67 / 75 Software & Services Group, Energy Engineering Team

Math Libraries – known issues

- Differences could potentially arise between:

�Different compiler releases, due to algorithm improvements

�Use –fimf-precision

�Different platforms, due to different algorithms or different code
paths at runtime

�Libraries detect run-time processor internally

�Independent of compiler switches

�use -fimf-arch-consistency=true

�Expected accuracy is maintained

�0.55 ulp for libimf

� < 4 ulp for libsvml (default for vectorized loops)

68 / 75 Software & Services Group, Energy Engineering Team

Intel® Math Kernel Library

� Linear algebra, FFTs, sparse solvers, statistical, …

- Highly optimized, vectorized

- Threaded internally using OpenMP*

- Repeated runs may not give identical results

� Conditional BitWise Reproducibility

- Repeated runs give identical results under certain conditions:

� Same number of threads

� OMP_SCHEDULE=static (the default)

� Same OS and architecture (e.g. Intel 64)

� Same microarchitecture, or specify a minimum microarchitecture

� Consistent data alignment

- Call mkl_bwr_set(…)

1/31/2013

35

69 / 75 Software & Services Group, Energy Engineering Team

Reproducibility of Reductions in OpenMP*

� Each thread has its own partial sum

- Breakdown, & hence results, depend on number of threads

- Partial sums are summed at end of loop

- Order of partial sums is undefined (OpenMP standard)

� First come, first served

� Result may vary from run to run (even for same # of threads)

� For both gcc and icc

� Can be more accurate than serial sum

- For icc, option to define the order of partial sums (tree)

� Makes results reproducible from run to run

� export KMP_FORCE_REDUCTION=tree (may change!)
� May also help accuracy

� Possible slight performance impact, depends on context

� Requires static scheduling, fixed number of threads

� currently undocumented (“black belt”, at your own risk)

� See example

70 / 75 Software & Services Group, Energy Engineering Team

Conclusions

1/31/2013

36

71 / 75 Software & Services Group, Energy Engineering Team

Conclusions 1

• Amdahl is back (or never died) in 2D

Application must be 100% // and 100% SIMD

• Only your application can tell

• How far are you from the peak flops and peak BW ?

• What is the current impact of vectorization ?

• How parallel it is

• What execution model (offload, native, symmetric) ?

• Keep advantage of all CPU cores + Coprocessor

• Power efficiency

• Portable workload

72 / 75 Software & Services Group, Energy Engineering Team

Conclusion 2 : Perf measurement

• Use of the right metrics for performance measurements

• Know the max theoretical performance of your implementation

• Don’t forget system configuration and its impact on measurements

• Simple projections are usefull

• Final goal of perf modelling must be clearly defined

- Short term optimization with current kernel and hdw

- Short / mid term extrapolation for future hardware

- Long term extrapolation with future kernels and future hardwares

1/31/2013

37

73 / 75 Software & Services Group, Energy Engineering Team

Conclusion 3

• Keep portability in mind

• There is no free lunch with magic hardware , be sure you take the most

from the actual one

• Validate your results

• As usual on the physical side with analytical solution when possible

• Keep in mind « aggressive optim » and validate with secured options

74 / 75 Software & Services Group, Energy Engineering Team

References

74

● [1] Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

● [2] Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

● [3] Steven S. Muchnik, “Advanced Compiler Design and Implementation”

● [4] Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

- http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-
compilers/

- http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

- http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-
compiler-options-for-sse-generation-and-processor-specific-optimizations/

• The Intel® C++ and Fortran Compiler Documentation, “Floating Point Operations”

• “Consistency of Floating-Point Results using the Intel® Compiler” http://software.intel.com/en-
us/articles/consistency-of-floating-point-results-using-the-intel-compiler/

• Goldberg, David: "What Every Computer Scientist Should Know About Floating-Point Arithmetic“
Computing Surveys, March 1991, pg. 203

• the new Intel® BWR features – see this article for more details

• We need your feedback on missing, failing or suboptimal compiler functionality

• Please file a Premier case or post your findings/wishes to the compiler user forum

1/31/2013

38

75 / 75 Software & Services Group, Energy Engineering Team

Questions

Software & Services Group, Energy Engineering Team

“Prediction is very difficult, especially about the future”

by Niels Bohr, Physicist, 1885-1962

76 / 75 Software & Services Group, Energy Engineering Team

Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for
instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but
do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers,
including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed
description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library routines that are part
of Intel® compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While
the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible
microprocessors, depending on the options you select, your code and other factors, you likely will get extra performance
on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.
Notice revision #20101101

1/31/2013

39

77 / 75 Software & Services Group, Energy Engineering Team

Legal Disclaimer

Legal Disclamer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or software
design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate
the performance of systems or components they are considering purchasing. For more information on performance tests
and on the performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

