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HPC  Introduction
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Agenda

• Introduction to HPC

• Silicium first: 

• CPU 

• Coprocessor

• Application point of view: 

• Perf measurement

• How to make it faster

• Are the results valid ?
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Glossary, “High performance computing”

� Peak Flops = nb of floating points operations per cycle * frequency

Efficiency = % of the peak performance

For Flops => Peak flops / Achieved flops

For BW =>   Peak GB/s   versus  Achieved GB/s

Both depend on Hardware and Software 

sec/sec)/(*)/( FlopscyclecycleFlopsPeak ==

First question : what is the peak perf of your laptop ?  
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A very brief history

60’s 70’s 80’s 90’s 00’s

The Intel Paragon was a series of

massively parallel

supercomputers produced by

Intel The Paragon series was

based around the Intel i860 RISC

microprocessor. Up to 2048

(later, up to 4000) i860s were

connected in a 2D grid

The CM-5 is MIMD (Multiple

Instructions Multiple Data) using

commodity SPARC processors using a

"fat tree" interconnect

The CM-2 is SIMD

(16 k processors)

Intel ASCI RED:

MIMD massively-

parallel 

processing

machine initially 

consisting of 

4,510 compute 

nodes)

1 Tflops (1996)

RISC

Multithreading

Superscalar

Vector machine

MPP machine
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Then what about Exaflops ?

5

1 EFlop

~ 2019

6 / 75 Software & Services Group, Energy Engineering Team

SuperComputer power challenges

French Nuclear plants ~63 GW:

34 reactors of 900 MW

20 reactors of 1300 MW

4 reactors of 1450 MW

+ EPR 1 600 MW
Today CPU:

200 GF-DP

150 W

Would gives ~ 1,5 GW for 1 Exaflops Peak

[20:40] MW would be a reasonnable target

x 5. 10E06

(40 M cores)
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SuperComputer power challenges

• At multi-rack system level

• Super Computer Today: 10 PF, 12 MW � 1200 pJ / Ops

• Exaflop (lower lim.) : 1000 PF, 20 MW � 20 pJ / Ops

• Exaflop (upper lim.) : 1000 PF, 40 MW � 40 pJ / Ops

• Processor portion needs to reduce to 10 pJ/ Ops

• Needs huge improvement (30 to 60x) in all system components
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Micro architecture Performance Parameters

frequency + voltage reduction : Cubic reduction of power

• Core capability (IPC)

• Vector Flop density (SIMD)

• Core count

• On-die Interconnect

• Frequency

• Mem Latency

• Mem BW & Size

Perf = Frequency * IPC

Power ~ C * Voltage² * Freq
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First approximation: HPC is only a matter of Freq and BW

- Frequency is « not an issue »

- Data movement is the issue

The  model : “Total Elapsed time = T_CPU  + T_mem + … “ is fine but …     

T_CPU  and T_mem are strongly correlated

for (i=0;i<=MAX;i++)

c[i]= a[i] + b[i]* d[i];
store load load load

add mul

Achieved Flops/s won’t be high enough if load / store are not fast enough
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Size, BW &  latency

CPU

L 1 L 2 L 3

memory

I / O Interconnect.

From the core …………   - >          ……                  to the i/o subsystem

Bandwidth
Latency

Size
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CPU.ops% * (cycle / inst.) + Mem.ops% * [  ( LL_success%  * cycle / inst)  + LL_misses% * cycle/inst) ]  

Memory bound.
“Stream”

CPU bound.
“HPL” Real  world applications 

Part of the code 
doing ops

Part of the code 
doing memory 

access

How to deal with that on the application side ?

CPU

L 1 L 2 L 3

memory

I / O

Interconnect.
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Agenda :

Silicium First
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Vectorization

� Single Instruction Multiple Data (SIMD):

- Processing vector with a single operation

- Provides data level parallelism (DLP)

- Because of DLP more efficient than scalar processing

� Vector:

- Consists of more than one element

- Elements are of same scalar data types

(e.g. floats, integers, …)

1/31/201313

Scalar 
Processing

Vector 
Processing
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SIMD Types for Intel® Architecture I
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X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
063

MMX™ 
Vector size: 64 bit
Data types:
•8, 16 and 32 bit integer
VL: 2, 4, 8

SSE
Vector size: 128 bit
Data types:
•8, 16, 32, 64 bit integer
•32 and 64 bit float 
VL: 2, 4, 8, 16

X2

Y2

X2◦Y2 X1

Y1

X1◦Y1X4

Y4

X4◦Y4 X3

Y3

X3◦Y3
127 0

Illustrations: Xi, Yi & results 32 bit integer



1/31/2013

8

15 / 75 Software & Services Group, Energy Engineering Team

SIMD Types for Intel® Architecture II

1/31/201315

AVX 
Vector size: 256 bit
Data types:
• 32 and 64 bit float
VL: 4, 8, 16

Intel® MIC
Vector size: 512 bit
Data types:
• 32 and 64 bit integer
• 32 and 64 bit float
VL: 8,16

X4

Y4

X4◦Y4 X3

Y3

X3◦Y3 X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
0

X8

Y8

X8◦Y8 X7

Y7

X7◦Y7 X6

Y6

X6◦Y6 X5

Y5

X5◦Y5
255

X4

Y4

X4◦Y4 X3

Y3

X3◦Y3 X2

Y2

X2◦Y2 X1

Y1

X1◦Y1
0

X8

Y8

X8◦Y8 X7

Y7

X7◦Y7 X6

Y6

X6◦Y6 X5

Y5

X5◦Y5X16

Y16

X16◦Y16 …

...

…

511

Illustrations: Xi, Yi & results 32 bit float
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Reminder about the peak Flops

Scheduler (Port names as used by Intel® Architecture Code Analyzer ***)

Load

Port 0 Port 1 Port 5 Port 2 Port 3

Load

Store Address

Store DataALUALU ALU/JMP

AVX FP Shuf

AVX FP Bool

VI* ADDVI* MUL

SSE MUL

DIV**

SSE ADD

AVX FP ADD

AVX FP MUL

0     63      127            255

SSE Shuf

AVX FP Blend

Port 4

AVX FP Blend

VI* ADD Store Address

6 instructions / cycle: 

• 3 memory ops

• 3 computational operations

Nehalem :  Two 128 bits SIMD per cycle

4 MUL (32b) and 4 ADD (32b):     8 Single Precision Flops / cycle

2 MUL (64b) and 2 ADD (64b): 4 Double Precision Flops / cycle

Sandy bridge :  Two 256 bits SIMD per cycle

8 MUL (32b) and 8 ADD (32b):     16 Single Precision Flops / cycle

4 MUL (64b) and 4ADD (64b):     8 Double Precision Flops / cycle

Intel® Sandy Bridge 
micro-u
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Performance at a glance : What SNB brings

The total benefit (at node level) is given by a combinaison of factors

• Benefit from micro-u optimization (IPC)

from 1.1x to 1.3x

• Benefit from the nb of cores

up to 1.33x 

• Benefit from AVX

up to 2x

• Benefit from Memory bandwidth

up  to 1.42x per core

up to  1.9x on node basis D
D
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How to take advantage of AVX for more Flops / cycles

1.0

2.0

0.0

Assembly

Intrinsics

Assembly

IntrinsicsMKL Dgemm
benchmark
MKL Dgemm
benchmark

MKL FFT 
benchmark
MKL FFT 

benchmark
1.5

Use Intel® Math Kernel 

Library as much as possible 

Use of  intrinsics or assembly

for specific kernels

Use Compiler and Intel tools

to optimize your source code

speedup

Application 
Source  code
Application 
Source  code

One core basis comparison
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Memory Bandwith:  a key point 

For Westmere DP server  with 1333 Mhz DDR3:

8*1.333* 3*2 = 63.984 GB/s  where Stream triad gives ~ 42 GB/s

For WSM / Nehalem-EX platform:  4 channels , 4 sockets and 1066 MHz memory

8*1.066* 4*4 = 136.484 GB/s peak (ST : 102 GB/s)

For Sandy Bridge EP platform: 4 channels , 2 sockets and 1600 MHz memory

8*1.600* 4*2 = 102.4 GB/s peak (ST : 80 GB/s)

Basical rules for theoretical memory BW [Bytes / second ] :

8 [Bytes / channel] * Mem freq [Gcycles/sec] * nb of channels * nb of sockets

*Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.
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Intel® Xeon Phi™ Product Family

• Up to 61 IA cores/1.1 GHz/ 244 Threads

• Up to 8GB memory with up to 352 GB/s bandwidth

• 512-bit SIMD instructions

• Open Source Linux operating system

• IP addressable

• Standard programming languages, tools, clustering

• 22 nm process

Passive Card

Active Card
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http://software.intel.com/en-us/mic-developer
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Intel® Xeon Phi™ Block Diagram
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Core Architecture

Instruction 
decoder

L1 Cache (I & D)

L2 Cache

Interprocessor
network

Vector Unit Scalar Unit

Vector
Registers

Scalar
Registers

512 KB Slice per Core – Fast Access to Local Copy

32 KB per core

L2 Hardware Prefetching

Fully Coherent

In Order

512-wide64-bit

4 Threads per Core

VPU: integer, SP, DP;
3-operand,

16-instruction 
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Intel® Software Tools Roadmap

High 
Performance 
Computing / 
Enterprise

Intel® Parallel Studio XE 2011 

Q1 ’13Q1 ’12 Q2 ’12 Q4 ’12Q3 ’12

Gold releaseBetaAlpha

Many-Core

Intel® Parallel Studio XE 2013 

Intel® Cluster Studio XE 2011 Intel® ClusterStudio XE 2013 

Intel Compilers & Analysis Tools 

for Intel® MIC Architecture 

(Linux*)

Intel Cluster Tools for Intel® 

MIC Architecture (Linux*)
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Spectrum of Execution Models

CPU-Centric Coprocessor-Centric

NativeSymmetricOffloadMulti-core Hosted

Main( )

Foo( )

MPI_*()

Main( )

Foo( )

MPI_*()

Main( )

Foo( )

MPI_*()
Multi-core

Many-core

Reverse Offload

Foo( )

PCIe
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Spectrum of Execution Models (Offload / Native / Symmetric)

Offload:

Workload is run on host, and 

highly parallel phases on 

Coprocessor 

!dir$ omp offload target(mic)

!$omp parallel do

do i=1,10

A(i) = B(i) * C(i)

enddo

!$omp end parallel

MPI  Example

on Host with offload to coprocessors
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Spectrum of Execution Models (Offload / Native / Symmetric)

MPI example

on Coprocessor only

Native (Coprocessor-only 

model):

Workload is run solely on coprocessor 

icc –mmic … ./bin_mic

Then

ssh mic0

./bin_mic

Or start it from host

micnaticeloadex ./bin_mic
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Spectrum of Execution Models (Offload / Native / Symmetric)

MPI example

On Host and  Coprocessor

Symmetric:

Workload runs on Host & Coprocessors

Mpiexec –host $host –np XX … \

-env OMP_NUM_THREADS YY ./mpi_bin_xeon \

: –host mic0 -np VV ... \

-env OMP_NUM_THREADS WW ./mpi_bin_phi
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Symmetric mode example

0,00

0,50

1,00

1,50
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2,50

3,00

3,50

4,00

SNB natif

4 MPI/ 4 OMP KNC ES2 natif

12 MPI/ 20 OMP Hybrid SNB 4/4

+ KNC ES2 12/20

1,00

2,57

3,57
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Nb of nodes (2 sockets SNB + 1 KNC B0. ES2)

weak scaling 

speedup Theory

Gain in work done per hour

Arslan et al., 2013. Rice HPC O&G workshop
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Theoretical Maximums : E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.  

Source: Intel as of October 17, 2012   Configuration Details: Please reference  slide speaker notes. For more information go to http://www.intel.com/performance

666

2 022

2 147

0

500

1000

1500

2000

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Single Precision  (GF/s)

333

1 011

1 074

0

200

400

600

800

1000

1200

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Double Precision  (GF/s)

102

320

352

0

50

100

150

200

250

300

350

E5-2670
(2x 2.6GHz,

8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P/X
(61C,
1.1GHz,
300W)

Memory Bandwidth (GB/s)
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16 [Chan.] * Chan.Speed [GT/s] * 4 [bytes]

=> [GB/s ]

Higher is Better
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Synthetic Benchmark Summary: E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Source: Intel Measured results as of October 26, 2012 Configuration Details: Please reference slide speaker notes.
For more information go to http://www.intel.com/performance
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Coprocessor results:  Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

(Intel® MKL) 
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Synthetic Benchmark Summary: E5-2670 vs. 5110P & SE10P

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to 
vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.  Source: Intel Measured results as of October 26, 2012   Configuration Details: Please reference  slide speaker notes.Formore 

information go to http://www.intel.com/performance
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78

174
181

0

50

100

150

200

2S Intel®
Xeon®

processor

1 Intel® 
Xeon Phi™ 
coprocessor

1 Intel® 
Xeon Phi™ 
coprocessor

SE10P STREAM Triad (GB/s)

E
C
C
 O
n

E
C
C
 O
ff

Higher is Better



1/31/2013

17

33 / 75 Software & Services Group, Energy Engineering Team

Application Performance vs. 2S-E5-2670 

Notes:

1. 2S Intel® Xeon® processor X5690 vs. 2S Xeon* + 1 Intel® Xeon Phi™ coprocessor (pre production HW/SW)

2. 2S Intel® Xeon® processor E5-2687 vs. 1 Intel® Xeon Phi™ coprocessor (preproduction HW/SW) (960 versions of improved workload)

3. 2S Intel® Xeon® processor E5-2680 vs. 1 Intel® Xeon Phi™ coprocessor (preproduction HW/SW)

4. 4 node cluster, each node with 2S Intel® Xeon® processor E5-2867 (comparison is cluster performance with and without 1 pre-production Intel® Xeon Phi™ coprocessor per node)

5. Includes additional FLOPS from transcendental function unit

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 

contemplated purchases, including the performance of that product when combined with other products.  
Source: Intel Measured results as of October 17, 2012   Configuration Details: Please reference  slide speaker notes.

For more information go to http://www.intel.com/performance 

Molecular
Dynamics

Embree 
Raytracing FinanceSeismic

Finite 
Element 
Analysis

INTEL LABS 
RAYTRACING 

SPEED-UP

1.8X

LOS ALAMOS 
MOLECULAR 
DYNAMICS

UP TO 

2.52X

BLACKSCHOLES 
SP 

UP TO 

7X

JEFFERSON LAB
LATTICE QCD 

UP TO 

2.7X
Monte Carlo SP

UP TO 

10.75X

ACCELEWARE
8TH ORDER FD

UP TO 

2.05X

SANDIA 
NATIONAL LABS 

MiniFE 

UP TO

1.7X

Physics

Real  world applications 
Memory bound.

“Stream”

CPU bound.

“HPL”
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Agenda :

Application Point of View
(Amdahl revisited)
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End users point of view : Physics and computing needs increase

Increase physics complexity
(at constant elapsed time and size ) 

Decrease elapsed time. 
(at constant size and physics) 

Increase problem size 
(at constant time and physics) 

35
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Parallel computing: amdahl law

36
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Serial
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Overhead

In theory In practice
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Speedup and efficiency

S
p

e
e

d
u

p

Nb cores

Super linear

Linear (theory)

Ideal

Saturated

« try again »

T(n) : elapsed time on n cores

S(n) : speedup

E(n) : efficiency

S(n)  = T(1) / T(n)

E(n) = S(n) / n

Ideal case:

S(n)  = T(1) / T(n) = n*T(n) / T(n) = n

E(n) = S(n) / n = 1

(remember to draw this graph from node to cluster level)
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• Amdahl’s law The serial bottleneck

• Software Compiler, OpenMP, MPI

• Data Locality Cache misses, latency

• Load Balancing Affect the parallel efficiency/scaling

• Parallel Overhead Affect the parallel efficiency/scaling

• Operating System Scheduling, Placement, I/O,... 

• Hardware CPU MHz, Latency, BW,Topology, I/O

“it’s the bandwidth, stupid !”

Why applications don’t scale



1/31/2013

20

39 / 75 Software & Services Group, Energy Engineering Team

Parallel computing: HowTo ?
E
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1 c 4 c
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1 c

Serial Optimization:0 -

1 -

2 -

E
la
p
se
d
ti
m
e

Work on the overhead:

strong HDW /SFTW 

relationship

Take advantage of parallelism

to run bigger workloads ?

(weak versus strong scaling)
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First at all : do it serial

E
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d
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e

1 c

E
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d
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m
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1 c

Profiling + HDW counters

Compiler option

Help the compiler

SIMD (sse)

Check memory management

Are all the Flops useful
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10 000 feet view of application measurements

Total elaspsed time  = nb of CPU CYCLES / Frequency

Starting time

Computational kernel

• Flops

• Int

• Read/write Dram

• i/o

• Comm

by hands to get max 

theoretical Perf 

Get approximate values 

using HDW counters

Whole application

• Parallel overhead

• « other instructions »

by hands

+ profiling tools

Total number of 

Instructions / sec

(hdw counter)
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3D Finite Difference Stencil  and Time Derivative updates

x

y

z

Time 
Derivative

curr_P, old_P

3D FD

curr_P old_P

new_P

do t =1, NT  // time steps

do z = zmin, zmax // SPACE STEPS

do y = ymin, ymax

do x = xmin, xmax

[ Finite Differences ]

[ Time Derivatives ]

end do

end do

end do

end do
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What results to look for ?

Gflops /sec: Are we far from the peak of the algorithm & of the  machine ?

(Mpts/s)      ->     (Flops/pts)      ->   (Flops/s)

Gbytes/sec : Are we bandwith limited or latency limited ? 

Flops/ joule: Can we see the impact of any given implementation ?

Total nb Ops per point per iteration  292

Total nb of point    2229969960.00000     

Total  (sec) =    9.598     

Total/ite (sec) =   0.479    

Speed 1:   232.313     M points / sec 

Speed 2:  6.968 E-002 Points / cycle 

Speed 3:   67.835      Gflops / sec

=>   42.390  % of peak,   1 threads,   6 MPIs

By hands to get max theoretical Perf 

Get approximate values using HDW counters

Computational kernel

• Flops / Int

• Read/write Dram

Needs to collect more than only the Elaspsed time !
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Real numbers when we can’t count FLOPS by hands

Flops/s : Collect FP related counters 

(FP_COMP_OPS_EXE.x87 + FP_COMP_OPS_EXE.SSE_DOUBLE_PRECISION + FP_COMP_OPS_EXE.SSE_SINGLE_PRECISION 

+ FP_COMP_OPS_EXE.SSE_FP_SCALAR) *1E-09 / Elapsed_time

GB/s : Collect ‘UNCore read and write events’

(UNC_IMC_WRITES for each socket + UNC_IMC_READS for each socket) *1E-09 * Cache line size / E_time

+ WATT  and Energy as a function of time 

where Elapsed time =  CPU_CLK_UNHALTED/ Processor Frequency / Nb of Cores

Hardware counters remain the fastest way to measure performance & efficiency

=> Gives Flops/s , memory demand and then Bytes/flops 
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Max theoretical Flops/s  by hands (isotropic 3DFD kernel)

Total number of flops per point: nF = 7K+5 , 

made of  ADD:      nA = 6K +2    and     MUL: nM = K + 3

-> max (nA,nM) is the limiting factor 

Achievable peak (with infinite bandwidth) is the ratio of nF by the max(nA, nM)

%Peak(K)= 100.0 *  [ nF / 2* max (nA,nM) ] 

K : half stencil length

=>  Give the kernel efficiency
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Reminder about the peak Flops

Scheduler (Port names as used by Intel® Architecture Code Analyzer ***)

Load

Port 0 Port 1 Port 5 Port 2 Port 3

Load

Store Address

Store DataALUALU ALU/JMP

AVX FP Shuf

AVX FP Bool

VI* ADDVI* MUL

SSE MUL

DIV**

SSE ADD

AVX FP ADD

AVX FP MUL

0     63      127            255

SSE Shuf

AVX FP Blend

Port 4

AVX FP Blend

VI* ADD Store Address

6 instructions / cycle: 

• 3 memory ops

• 3 computational operations

Nehalem :  Two 128 bits SIMD per cycle

4 MUL (32b) and 4 ADD (32b):     8 Single Precision Flops / cycle

2 MUL (64b) and 2 ADD (64b): 4 Double Precision Flops / cycle

Sandy bridge :  Two 256 bits SIMD per cycle

8 MUL (32b) and 8 ADD (32b):     16 Single Precision Flops / cycle

4 MUL (64b) and 4ADD (64b):     8 Double Precision Flops / cycle

sec/sec)/(*)/( FlopscyclecycleFlopsPeak ==

Intel® Sandy Bridge micro-u
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Flops/s Wall  : FP operations

Nb of tables implementation ADD MUL Total flops

Iso 3 6*K +2 K+3 7*K+5

Iso, rho 6 36*K – 95 19 *K – 46 56*K -141

VTI 7 Duveneck et al, 2011 6*K + 7 3*K + 8 9*K + 15

VTI, rho 10 Duveneck et al, 2011 36*K - 90 19 *K – 42 56*K - 132

TTI 24 Fletcher et al., 2009 30*K + 38 18*K + 62 48*K+100

Visco n/a Komatisch et al., 2009 n/a n/a n/a
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lo
p

s/
s

half stencil length (K)

iso

iso+rho

vti

vti+rho

tti

Max % of SP peak as function of kernel length

TTI  kernel is theoretically more efficient than the simple Isotropic !

%Peak(K)= 100.0 *  [ nF / 2* max (nA,nM) ] 
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DRAM BW  vs Total DRAM Reads + Writes 

TTI – 3DFD is definitively not bandwidth bound

Total DRAM reads + write / 100 Inst. Ret.

M
e

m
B

W
 (

G
B

/S
)

12 mpi processes

Mem boundCPU bound
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0.0 1.0 2.0 3.0 4.0 5.0 6.0
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Iso no-CB
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TTI CB

TTI no-CBTTI no-CB
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Visco Elastic Kernel: DRAM demand and power consumption
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Easy correlation of Instructions and Watts
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Perf & Perf per Watt

Higher is better

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Mpts/sec

Gflops / Joule

1250 pJ/Ops

2000 pJ/Ops

10 000 pJ/Ops

Exascale will need both highly optimized hardware and software
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6 threads from Socket 0

6 threads from Socket 1

Example of Non Uniform Memory Access (NUMA)

To achieve core and memory placements: 

1 MPI per socket + OMP threads, or 1 MPI per node + OMP threads

MInstr./sec/thread  function of wallclock time

SEG 2011            51
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FD (and RTM) BKMs: what may work .. or not

- Compiler option ( -xSSE4.2,AVX , -ftz, -ipo) + specific loop directives

- SSE/AVX implementation 

- difficult when you have many approximations with several stencils lengths

- Data layout: valuable in any case

- Cache Blocking: 

- works fine on kernel , less impact on whole application

- impossible with variable stencil lengths and independent partial derivatives

- Loop splitting for complex equation

- valuable for independant partial derivaties

- impossible for variable stencil lengths

- Domain decomposition / Data decompostion

- MPI domain decomposition usefull to save memory per node (to avoid i/o for example)

- batch scheduler distribution of 1 shot / node : no MPI needed 

- NUMA-aware Data Placement  

- mandatory for Hybrid MPI + OMP

- Dedicated optimization for MIC
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Agenda :

Application Point of View

Just Make it
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Vectorization of Code

• Transform sequential code to exploit vector processing capabilities (SIMD) 

– Manually by explicit syntax

– Automatically by tools like a compiler

for(i = 0; i <= MAX;i++)

c[i] = a[i] + b[i];

a

b

c

+

a

b

c

++

a[i]

b[i]

c[i]

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]
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Many Ways to Vectorize

Ease of useCompiler: 
Auto-vectorization (no change of code)

Programmer control

Compiler: 
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler: 
Intel® Cilk™ Plus Array Notation Extensions
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Control Vectorization !

Provides details on vectorization success & failure:

Linux*, Mac OS* X: -vec-report<n>, Windows*: /Qvec-report<n>

*: First available with Intel® Composer XE 2013

n Diagnostic Messages

0 Tells the vectorizer to report no diagnostic information. Useful for turning off reporting in case it 

was enabled on command line earlier.

1 Tells the vectorizer to report on vectorized loops.

[default if n missing]

2 Tells the vectorizer to report on vectorized and non-vectorized loops.

3 Tells the vectorizer to report on vectorized and non-vectorized loops and any proven or assumed 

data dependences.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the reason why they were not 

vectorized.

6* Tells the vectorizer to use greater detail when reporting on vectorized and non-vectorized loops 

and any proven or assumed data dependences.

1/31/2013 56
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Vectorization Report II

Note:

In case inter-procedural optimization (-ipo or /Qipo) is activated and 

compilation and linking are separate compiler invocations, the switch 

to enable reporting needs to be added to the link step!

35: subroutine fd( y )

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

novec.f90(38): (col. 3) remark: loop was not vectorized: existence 
of vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW 
dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_:  loop was not vectorized: 
existence of vector dependence

1/31/2013 57
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Reasons for Vectorization Fails & How to Succeed

● Most frequent reason is Dependence:

Minimize dependencies among iterations by design!

● Alignment: Align your arrays/data structures

● Function calls in loop body: Use aggressive in-lining (IPO)

● Complex control flow/conditional branches:

Avoid them in loops by creating multiple versions of loops

● Unsupported loop structure: Use loop invariant expressions

● Not inner loop: Manual loop interchange possible? 

● Mixed data types: Avoid type conversions

● Non-unit stride between elements: Possible to change algorithm to allow 

linear/consecutive access?

● Loop body too complex reports: Try splitting up the loops!

● Vectorization seems inefficient reports: Enforce vectorization, benchmark !
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IVDEP vs. SIMD Pragma/Directives

Differences between IVDEP & SIMD pragmas/directives:

�#pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

-Ignore vector dependencies (IVDEP):

Compiler ignores assumed but not proven dependencies for a loop

-Example: 

�#pragma simd (C/C++) or !DIR$ SIMD (Fortran):

- Aggressive version of IVDEP: Ignores all dependencies inside a loop

- It’s an imperative that forces the compiler try everything to vectorize

- Efficiency heuristic is ignored

- Attention: This can break semantically correct code!

However, it can vectorize code legally in some cases that wouldn’t be possible otherwise!

void foo(int *a, int k, int c, int m)

{

#pragma ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}
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Value Safety

“It may be  very difficult to understand that two simulations of the same 

process with the same code and the same parameters on the same computer 

give different results”
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Value Safety

“It may be  very difficult to understand that two simulations of the same 

process with the same code and the same parameters on the same computer 

give different results”
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Floating Point (FP) Programming Objectives

- Accuracy

� Produce results that are “close” to the correct value

�Measured in relative error, possibly in ulp

- Reproducibility

� Produce consistent results

�From one run to the next

�From one set of build options to another

�From one compiler to another

�From one platform to another

- Performance

� Produce the most efficient code possible

These options usually conflict! 

Judicious use of compiler options lets you control the tradeoffs.

Different compilers have different defaults. 
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Users are Interested in Consistent Numerical Results

� Root cause for variations in results

- floating-point numbers � order of computation matters!

- Single precision arithmetic example (a+b)+c  !=  a+(b+c)

226 – 226 + 1 = 1 (infinitely precise result)

(226 – 226) + 1 = 1 (correct IEEE single precision result)

226 – (226 – 1) = 0 (correct IEEE single precision result)

- Conditions that affect the order of computations

- Different code branches ( e.g. SSE2 versus AVX )

- Memory alignment ( scalar or vector code ) 

- Dynamic parallel task / thread / rank scheduling

� Bitwise repeatable/reproducible results 

repeatable = results the same as last run (same conditions)

reproducible = results the same as results in other environments

Environments = OS / architecture / # threads / CPU / 

6
3

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678901111

4.012345678901111

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678901111

4.012345678902222

4.012345678902222

4.012345678901111

…
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The –fp-model switch 

� -fp-model
- fast [=1] allows value-unsafe  optimizations (default)

- fast=2 allows additional approximations (very unsafe)

- precise value-safe optimizations only

(also source, double, extended)

- except enable floating point exception semantics

- strict precise + except + disable fma +                      
don’t assume default floating-point environment

� Replaces old switches  –mp, -fp-port, etc (don’t use!)

� -fp-model precise -fp-model source 
� recommended for ANSI/ IEEE standards compliance,     C++ & Fortran

� “source” is default with “precise” on Intel 64 Linux
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Value Safety 

ANSI/ IEEE standards compliance C++ & Fortran:

-fp-model source or -fp-model precise

• Prevents vectorization of reductions

• No use of “fast” division or square root 

Ensures ‘Value Safety’ by disallowing: 

x / x ���� 1.0 x could be 0.0, ∞, or NaN

x – y ���� - (y – x) If x equals y, x – y is +0.0 while – (y – x) is -0.0

x – x ���� 0.0 x could be ∞ or NaN

x * 0.0 ���� 0.0 x could be -0.0, ∞, or NaN

x + 0.0 ���� x x could be -0.0

(x + y) + z ���� x + (y + z) General reassociation is not value safe

(x == x) ���� true x could be NaN
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Value Safety

Affected Optimizations include:

� Reassociation

� Flush-to-zero

� Expression Evaluation, various mathematical simplifications

� Math library approximations

� Approximate divide and sqrt

[-no]-prec-div /Qprec-div[-]

� Enables[disables] various divide optimizations
- x / y � x * (1.0 / y)

- Approximate divide and reciprocal

[-no]-prec-sqrt /Qprec-sqrt[-]

� Enables[disables] approximate sqrt and reciprocal sqrt
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Math Libraries – known issues

- Differences could potentially arise between:

�Different compiler releases, due to algorithm improvements

�Use –fimf-precision

�Different platforms, due to different algorithms or different code 
paths at runtime

�Libraries detect run-time processor internally

�Independent of compiler switches

�use -fimf-arch-consistency=true 

�Expected accuracy is maintained

�0.55 ulp for libimf

� < 4 ulp for libsvml  (default for vectorized loops)
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Intel® Math Kernel Library

� Linear algebra, FFTs, sparse solvers, statistical, …

- Highly optimized, vectorized

- Threaded internally using OpenMP*

- Repeated runs may not give identical results

� Conditional BitWise Reproducibility

- Repeated runs give identical results under certain conditions:

� Same number of threads

� OMP_SCHEDULE=static       (the default)

� Same OS and architecture   (e.g. Intel 64)

� Same microarchitecture, or specify a minimum microarchitecture

� Consistent data alignment

- Call   mkl_bwr_set(…)
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Reproducibility of Reductions in OpenMP*

� Each thread has its own partial sum

- Breakdown, & hence results, depend on number of threads

- Partial sums are summed at end of loop

- Order of partial sums is undefined (OpenMP standard)

� First come, first served

� Result may vary from run to run  (even for same # of threads)

� For both gcc and icc

� Can be more accurate than serial sum

- For icc, option to define the order of partial sums  (tree)

� Makes results reproducible from run to run

� export KMP_FORCE_REDUCTION=tree      (may change!)
� May also help accuracy

� Possible slight performance impact, depends on context

� Requires static scheduling, fixed number of threads

� currently undocumented   (“black belt”, at your own risk)

� See example
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Conclusions
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Conclusions 1

• Amdahl is back (or never died) in 2D

Application must be 100% // and 100% SIMD 

• Only your application can tell 

• How far are you from the peak flops and peak BW ?

• What is the current impact of vectorization ?

• How parallel it is

• What execution model (offload, native, symmetric) ?

• Keep advantage of all CPU cores + Coprocessor

• Power efficiency

• Portable workload
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Conclusion 2 : Perf measurement

• Use of the right metrics for performance measurements

• Know the max theoretical performance of your implementation

• Don’t forget system configuration and its impact on measurements

• Simple projections are usefull

• Final goal of perf modelling must be clearly defined

- Short term optimization  with current kernel and hdw

- Short / mid term extrapolation for future hardware

- Long term extrapolation with future kernels and future hardwares
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Conclusion 3

• Keep portability in mind

• There is no free lunch with magic hardware , be sure you take the most

from the actual one

• Validate your results

• As usual on the physical side with analytical solution when possible

• Keep in mind « aggressive optim » and validate with secured options
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• the new Intel® BWR features – see this article for more details 

• We need your feedback on missing, failing or suboptimal  compiler functionality 

• Please file a Premier case or post your findings/wishes to the compiler user forum
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Questions

Software & Services Group, Energy Engineering Team

“Prediction is very difficult, especially about the future” 

by Niels Bohr, Physicist, 1885-1962
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Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for
instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but
do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers,
including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed
description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library routines that are part
of Intel® compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While
the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible
microprocessors, depending on the options you select, your code and other factors, you likely will get extra performance
on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.
Notice revision #20101101
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Legal Disclaimer

Legal Disclamer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or software
design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate
the performance of systems or components they are considering purchasing. For more information on performance tests
and on the performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.


