

CITEPH Project

Simulation of extreme waves impacts on a FLNG

Pierre-Michel GUILCHER, Julien CANDELIER

(HydrOcean)

Ludovic BEGUIN, Guillaume DUCROZET, David Le TOUZE

(Ecole Centrale Nantes)

Context of the study

Strong wave impacts knowledge => structural design

- Hydrodynamics loads
- Induced by waves
- Strongly nonlinear
- multiphysics

~ms, ~mm ~s, ~m

Gas compressibility, hydroelasticity

Experimental setup

Experimental setup

Experimental Wave Tank ECN

- ≻ 50x30x5 m
- Multiflap wave generator

Simplified FNLG model

➤ 1.1m width

Instrumentation

- > Wave probes in tank
- > Wave probes on deck
- Pressure probes on breakwater

Water waves

- Regular waves
- Wavelength=7.3m
- \blacktriangleright Amplitude = 0.44m HYDROCEAN

Wave-Forcing procedure

Main algorithm

Complete problem through direct simulation

- Wave generation
- Wave propagation from generator to structure
- > Impacts
- High cpu time consuming
- Numerical methods not adapted

Wave generation/propagation

- Spectral methods
- No dissipation
- > No structure
- > Low cpu time
- Computed <u>once</u> before SPH computation

Impact

- > SPH method
- Inlet/outlet wave boundaries

Incident wave models: potential spectral methods

- Rienecker & Fenton
 - ★ Monochromatic regular waves
 - ★ Bidimensional
 - ★ Fully nonlinear
- HOS (Higher Order Spectral)
 - ★ Irregular waves
 - ★ Multidimensional
 - ★ Fully nonlinear
 - ★ Applications: focused waves, states, etc.

- SPH-flow solver
 - Developed by ECN and HydrOcean
 - Improved SPH solvers
 - ★ Riemann solvers for stability
 - ★ Renormalization for accuracy
 - High Parallel efficiency
 - * domain decomposition (MPI comm.)
 - ★ Efficient scalability (linear scalability up to 40000 cores / 1 billion particles)
 - ★ Variable-h capability
 - ★ 3D complex geometries/domains

Imposition of incident field

Free standard particles

- Standard SPH scheme
- Standard flux interactions with dummy particles

Dummy particles in the inlet/outlet area

- Pressure, velocity from potential solution
- Position updated with incident velocity

Incident waves

- ★ No remeshing
- * Enough particles at start time in the buffer zone is required
- ★ Vitalization/unvitalization of particles through inlet/outlet boundary

- Free surface elevation
 - Reproduction of HOS signal along the ship in the undisturbed area
 - No phase shifting of SPH/reference HOS
 - Small damping

- Numerical Set-up
 - dx = 0.01 m
 - ~ 250 neighbours
 - $L/dx \approx 100$ (L = deck width)
 - $\lambda/dx \approx 750 \ (\lambda = wave length)$
 - ~ 1.5 millions particles
 - h-variable discretisation
 - Use of 512 cores

Qualitative description

Incident wave exceeding freeboard

Impact of the plunging jet, Flooding of lateral flows

Qualitative description

Converging flow impacts the wall

Flow is deviated vertically

Qualitative description

Collapse of the water column

Water escape

- Selection of greenwater event
 - Irregular sea state statistically described as (Hs, Tp)
 - How to determine most severe conditions?
 - Not possible with CFD
 - Use of 'old' linear potential solvers

Linear seakeeping solver

Selection of greenwater event

Conclusions and perspectives

Conclusions

- wave-structure interactions simulation
 - forcing procedure between non-linear potential flows and SPH is effective
 - uses the advantages of each solver, without drawbacks for simulations with no diffracted field at open boundaries

- Numerical simulation of greenwater events:
 - propagation phase: no phase shifting, small damping
 - Qualitative behaviour of deck flooding is captured
 - Kinematics OK, dynamics (pressure) not => Need of higher refinement => local refinement
 - Still a very demanding problem in terms of CPU

